import logging import xgboost as xgb import joblib import pandas as pd # Configure logging logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(name)s - %(message)s", ) logger = logging.getLogger(__name__) def __main__(pti : float, score_results : float, BALMAG01 : float, revolving_amount_monthly_payment : float, closed_with_balance_amount_current_balance : float, AT31S : int, AT20S : int, BC21S : int, record_counts_revolving_trade_count : int, record_counts_total_trade_count : int, PAYMNT10 : float, AGG102 : float, total_amount_high_credit : float, revolving_amount_current_balance : float, total_amount_current_balance : float, REV83 : float, revolving_amount_high_credit : float, closed_with_balance_amount_monthly_payment : float, revolving_amount_percent_available_credit : float, AGG101 : float, revolving_amount_credit_limit : float, AT09S : int, US01S : int)->dict: input_data = { "pti": pti, "score_results": score_results, "BALMAG01": BALMAG01, "revolving_amount_monthly_payment": revolving_amount_monthly_payment, "closed_with_balance_amount_current_balance": closed_with_balance_amount_current_balance, "AT31S": AT31S, "AT20S": AT20S, "BC21S": BC21S, "record_counts_revolving_trade_count": record_counts_revolving_trade_count, "record_counts_total_trade_count": record_counts_total_trade_count, "PAYMNT10": PAYMNT10, "AGG102": AGG102, "total_amount_high_credit": total_amount_high_credit, "revolving_amount_current_balance": revolving_amount_current_balance, "total_amount_current_balance": total_amount_current_balance, "REV83": REV83, "revolving_amount_high_credit": revolving_amount_high_credit, "closed_with_balance_amount_monthly_payment": closed_with_balance_amount_monthly_payment, "revolving_amount_percent_available_credit": revolving_amount_percent_available_credit, "AGG101": AGG101, "revolving_amount_credit_limit": revolving_amount_credit_limit, "AT09S": AT09S, "US01S": US01S, "has_mortgage": None } # Load model try: model = joblib.load("./xgboost_model.joblib") # model = joblib.load("C:/Users/cbollu/Downloads/test_blocks/test_blocks/sequence-1/pd_v2_processing/xgboost_model.joblib") except Exception as e: logger.exception("An unexpected error occurred while loading the model.") raise e df_pre_processed = pd.DataFrame(input_data, index=[0]) if df_pre_processed.empty: print("PD V2 Pre Processed DataFrame is empty.") expected_features = model.feature_names actual_features = df_pre_processed.columns.tolist() missing_features = [feature for feature in expected_features if feature not in actual_features] # Add missing features as None (NaN) values for feature in missing_features: df_pre_processed[feature] = None # Convert object columns to categorical for col in df_pre_processed.columns: if df_pre_processed[col].dtype == 'object': df_pre_processed[col] = pd.Categorical(df_pre_processed[col]) # Prepare data for prediction dmatrix = xgb.DMatrix(df_pre_processed[expected_features], enable_categorical=True) # Make prediction prediction = model.predict(dmatrix)[0] logger.info(f"PD V2 Predicted Score: {prediction}") return {"probability": float(prediction)}