EDT Processing block
All checks were successful
Build and Push Docker Image / test (push) Successful in 28s
Build and Push Docker Image / build_and_push (push) Successful in 1m25s

This commit is contained in:
Admin User 2025-02-05 19:13:43 +00:00
parent 70590db6b5
commit 8c887e765b
7 changed files with 228 additions and 23 deletions

View File

@ -1 +1,9 @@
**Hello world!!!**
## Overview
This block (`block.py`) is responsible for loading and scoring the model.
## Key Inputs & Outputs
- **Request**: Refer to `request_schema.json` for detailed input fields and validation rules.
- **Response**: Refer to `response_schema.json` for the returned structure and data types.
## Implementation Details
- All core logic resides in `block.py` within the `__main__` function.

103
block.py
View File

@ -1,21 +1,86 @@
@flowx_block
def example_function(request: dict) -> dict:
import logging
import joblib
import xgboost as xgb
import pandas as pd
import json
import math
# Processing logic here...
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
)
logger = logging.getLogger(__name__)
return {
"meta_info": [
{
"name": "created_date",
"type": "string",
"value": "2024-11-05"
}
],
"fields": [
{
"name": "",
"type": "",
"value": ""
}
]
}
# with open('C:/Users/abinisha/flowx/kiwi-blocks/sequence-2/fraud_v1_pre_processing/category_orders_train.json', 'r') as f:
with open('./category_orders_train.json', 'r') as f:
category_orders = json.load(f)
def __main__(user_age: int, persona_entity_confidence_score: float, persona_selfie_similarity_score_right: float,
persona_selfie_similarity_score_left: float, persona_hesitation_percentage: float,
persona_hesitation_count: float, device_id_age_max: int, selfie_consistency_score_avg: float,
device_consistency: int, selfie_consistency_score: float, global_fs_ls: int, inquiry_frequency: int,
confidence_score_min: float, contract_date_fs_sub: int, browser_os: str, user_city_ip_match: int,
device_id_age_avg: float, persona_distraction_events: float, sub_fs_ls: int, device_id_age_min: int,
confidence_score_max: float, persona_phone_risk_score: float, ip_address_risk_level: str,
login_frequency: float, suspect_score: int, confidence_score: float, name_consistency: int,
ip_location_consistency: int) -> dict:
input_data = {
"user_age": user_age,
"persona_entity_confidence_score": persona_entity_confidence_score,
"persona_selfie_similarity_score_right": persona_selfie_similarity_score_right,
"persona_selfie_similarity_score_left": persona_selfie_similarity_score_left,
"persona_hesitation_percentage": persona_hesitation_percentage,
"persona_hesitation_count": persona_hesitation_count,
"device_id_age_max": device_id_age_max,
"selfie_consistency_score_avg": selfie_consistency_score_avg,
"device_consistency": device_consistency,
"selfie_consistency_score": selfie_consistency_score,
"global_fs_ls": global_fs_ls,
"inquiry_frequency": inquiry_frequency,
"confidence_score_min": confidence_score_min,
"contract_date_fs_sub": contract_date_fs_sub,
"browser_os": browser_os,
"user_city_ip_match": user_city_ip_match,
"device_id_age_avg": device_id_age_avg,
"persona_distraction_events": persona_distraction_events,
"sub_fs_ls": sub_fs_ls,
"device_id_age_min": device_id_age_min,
"confidence_score_max": confidence_score_max,
"persona_phone_risk_score": persona_phone_risk_score,
"ip_address_risk_level": ip_address_risk_level,
"login_frequency": login_frequency,
"suspect_score": suspect_score,
"confidence_score": confidence_score,
"name_consistency": name_consistency,
"ip_location_consistency": ip_location_consistency
}
# Load the model
model = joblib.load("./xgboost_model.joblib")
# model = joblib.load("C:/Users/abinisha/flowx/kiwi-blocks/sequence-2/fraud_v1_processing/xgboost_model.joblib")
df = pd.DataFrame(input_data, index=[False])
# Ensure categorical columns are treated as categories
categorical_columns = ['browser_os', 'ip_address_risk_level']
for col in categorical_columns:
if col in df.columns:
df[col] = df[col].str.lower().replace([None, "", "null", math.nan], "none")
df[col] = pd.Categorical(df[col], categories=category_orders.get(col, []))
# Ensure all columns are numeric where possible
for col in df.columns:
if col not in categorical_columns:
df[col] = pd.to_numeric(df[col], errors='ignore')
model_feature_names = model.feature_names
dmatrix = xgb.DMatrix(df[model_feature_names], enable_categorical=True)
prediction = model.predict(dmatrix)[0]
logger.info(f"Fraud V1 Predicted Score: {prediction}")
return {'probability': float(prediction)}

View File

@ -0,0 +1 @@
{"browser_os": ["android", "chrome os", "ios", "linux", "mac os x", "none", "windows"], "ip_address_risk_level": ["high-risk", "low-risk", "none"]}

View File

@ -1 +1,119 @@
{}
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"user_age": {
"type": ["integer", "null"],
"description": "Age of the user at the contract date, based on birthdate and contract date"
},
"persona_entity_confidence_score": {
"type": ["number", "null"],
"description": "Based on confidence reasons assign a score between 0 and 100"
},
"persona_selfie_similarity_score_right": {
"type": ["number", "null"],
"description": "Similarity score from the right side selfie"
},
"persona_selfie_similarity_score_left": {
"type": ["number", "null"],
"description": "Similarity score from the left side selfie"
},
"persona_hesitation_percentage": {
"type": ["number", "null"],
"description": "Percentage of time in the flow where the customer did not enter inputs"
},
"persona_hesitation_count": {
"type": ["number", "null"],
"description": "Persona hesitation count"
},
"device_id_age_max": {
"type": ["integer", "null"],
"description": "This calculates the maximum device age for a user and loan, similar to min and avg logic but for the max value."
},
"selfie_consistency_score_avg": {
"type": ["number", "null"],
"description": "Average selfie consistency score for the user's persona activity"
},
"device_consistency": {
"type": ["integer", "null"],
"description": "Number of distinct devices associated with a user and loan"
},
"selfie_consistency_score": {
"type": ["number", "null"],
"description": "Average similarity score between left and right selfie"
},
"global_fs_ls": {
"type": ["integer", "null"],
"description": "Days between the first and last global appearance of the device"
},
"inquiry_frequency": {
"type": ["integer", "null"],
"description": "Number of inquiries made by the user regarding the loan"
},
"confidence_score_min": {
"type": ["number", "null"],
"description": "The minimum recorded confidence score for the user and loan during the timeframe."
},
"contract_date_fs_sub": {
"type": ["integer", "null"],
"description": "Days between the first subscription appearance and contract date"
},
"browser_os": {
"type": ["string", "null"],
"description": "Browser OS"
},
"user_city_ip_match": {
"type": ["integer", "null"],
"description": "Checks if the user's city matches the IP city"
},
"device_id_age_avg": {
"type": ["number", "null"],
"description": "This calculates the rolling average of device_id_age for a user and loan. If no previous rows, the current value is returned."
},
"persona_distraction_events": {
"type": ["number", "null"],
"description": "Persona distraction events"
},
"sub_fs_ls": {
"type": ["integer", "null"],
"description": "Days between the first and last subscription activity"
},
"device_id_age_min": {
"type": ["integer", "null"],
"description": "This calculates the minimum device age for a user and loan, falling back to the current device age if no prior values exist."
},
"confidence_score_max": {
"type": ["number", "null"],
"description": "The maximum confidence score recorded for the user and loan combination."
},
"persona_phone_risk_score": {
"type": ["number", "null"],
"description": "Risk associated with the phone number. The risk score ranges from 0 to 100. The higher the risk score, the higher the risk level."
},
"ip_address_risk_level": {
"type": ["string", "null"],
"description": "Checks if the IP country code matches the persona country code"
},
"login_frequency": {
"type": ["number", "null"],
"description": "This counts the number of times the user logs in based on the inquiry_updated_at timestamp, providing insights into the user's login behavior throughout the loan process."
},
"suspect_score": {
"type": ["integer", "null"],
"description": "Suspect score"
},
"confidence_score": {
"type": ["number", "null"],
"description": "Confidence score"
},
"name_consistency": {
"type": ["integer", "null"],
"description": "Checks if the first name in the persona matches the user-provided first name"
},
"ip_location_consistency": {
"type": ["integer", "null"],
"description": "Number of distinct IP locations for a user and loan"
}
},
"required": []
}

View File

@ -1 +1,5 @@
{}
jsonschema==4.23.0
xgboost==1.7.5
joblib==1.3.2
pandas==2.2.2
numpy==1.23.5

View File

@ -1 +1,10 @@
{}
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"probability": {
"type": "number",
"description": "Fraud Model predicted score."
}
}
}

BIN
xgboost_model.joblib Normal file

Binary file not shown.