87 lines
3.9 KiB
Python
Raw Normal View History

2025-02-05 19:13:43 +00:00
import logging
import joblib
import xgboost as xgb
import pandas as pd
import json
import math
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
)
logger = logging.getLogger(__name__)
# with open('C:/Users/abinisha/flowx/kiwi-blocks/sequence-2/fraud_v1_pre_processing/category_orders_train.json', 'r') as f:
with open('./category_orders_train.json', 'r') as f:
category_orders = json.load(f)
def __main__(user_age: int, persona_entity_confidence_score: float, persona_selfie_similarity_score_right: float,
persona_selfie_similarity_score_left: float, persona_hesitation_percentage: float,
persona_hesitation_count: float, device_id_age_max: int, selfie_consistency_score_avg: float,
device_consistency: int, selfie_consistency_score: float, global_fs_ls: int, inquiry_frequency: int,
confidence_score_min: float, contract_date_fs_sub: int, browser_os: str, user_city_ip_match: int,
device_id_age_avg: float, persona_distraction_events: float, sub_fs_ls: int, device_id_age_min: int,
confidence_score_max: float, persona_phone_risk_score: float, ip_address_risk_level: str,
login_frequency: float, suspect_score: int, confidence_score: float, name_consistency: int,
ip_location_consistency: int) -> dict:
input_data = {
"user_age": user_age,
"persona_entity_confidence_score": persona_entity_confidence_score,
"persona_selfie_similarity_score_right": persona_selfie_similarity_score_right,
"persona_selfie_similarity_score_left": persona_selfie_similarity_score_left,
"persona_hesitation_percentage": persona_hesitation_percentage,
"persona_hesitation_count": persona_hesitation_count,
"device_id_age_max": device_id_age_max,
"selfie_consistency_score_avg": selfie_consistency_score_avg,
"device_consistency": device_consistency,
"selfie_consistency_score": selfie_consistency_score,
"global_fs_ls": global_fs_ls,
"inquiry_frequency": inquiry_frequency,
"confidence_score_min": confidence_score_min,
"contract_date_fs_sub": contract_date_fs_sub,
"browser_os": browser_os,
"user_city_ip_match": user_city_ip_match,
"device_id_age_avg": device_id_age_avg,
"persona_distraction_events": persona_distraction_events,
"sub_fs_ls": sub_fs_ls,
"device_id_age_min": device_id_age_min,
"confidence_score_max": confidence_score_max,
"persona_phone_risk_score": persona_phone_risk_score,
"ip_address_risk_level": ip_address_risk_level,
"login_frequency": login_frequency,
"suspect_score": suspect_score,
"confidence_score": confidence_score,
"name_consistency": name_consistency,
"ip_location_consistency": ip_location_consistency
}
# Load the model
model = joblib.load("./xgboost_model.joblib")
# model = joblib.load("C:/Users/abinisha/flowx/kiwi-blocks/sequence-2/fraud_v1_processing/xgboost_model.joblib")
df = pd.DataFrame(input_data, index=[False])
# Ensure categorical columns are treated as categories
categorical_columns = ['browser_os', 'ip_address_risk_level']
for col in categorical_columns:
if col in df.columns:
df[col] = df[col].str.lower().replace([None, "", "null", math.nan], "none")
df[col] = pd.Categorical(df[col], categories=category_orders.get(col, []))
# Ensure all columns are numeric where possible
for col in df.columns:
if col not in categorical_columns:
df[col] = pd.to_numeric(df[col], errors='ignore')
model_feature_names = model.feature_names
dmatrix = xgb.DMatrix(df[model_feature_names], enable_categorical=True)
prediction = model.predict(dmatrix)[0]
logger.info(f"Fraud V1 Predicted Score: {prediction}")
return {'probability': float(prediction)}